A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties.

نویسندگان

  • Guohai Chen
  • Robert C Davis
  • Don N Futaba
  • Shunsuke Sakurai
  • Kazufumi Kobashi
  • Motoo Yumura
  • Kenji Hata
چکیده

We investigated the correlation between growth efficiency and structural parameters of single-walled carbon nanotube (SWCNT) forests and report the existence of a SWCNT "sweet spot" in the CNT diameter and spacing domain for highly efficient synthesis. Only within this region could SWCNTs be grown efficiently. Through the investigation of the growth rates for ∼340 CNT forests spanning diameters from 1.3 to 8.0 nm and average spacing from 5 to 80 nm, this "sweet spot" was found to exist because highly efficient growth was constrained by several mechanistic boundaries that either hindered the formation or reduced the growth rate of SWCNT forests. Specifically, with increased diameter SWCNTs transitioned to multiwalled CNTs (multiwall border), small diameter SWCNTs could only be grown at low growth rates (low efficiency border), sparse SWCNTs lacked the requirements to vertically align (lateral growth border), and high density catalysts could not be prepared (high catalyst density border). As a result, the SWCNTs synthesized within this "sweet spot" possessed a unique set of characteristics vital for the development applications, such as large diameter, long, aligned, defective, and high specific surface area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes.

We demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water. Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotub...

متن کامل

Influence of a Top Crust of Entangled Nanotubes on the Structure of Vertically Aligned Forests of Single-Walled Carbon Nanotubes

The time evolution of the growth process of vertically aligned single-walled carbon nanotubes (or V-SWNTs) on a flat substrate was examined by scanning electron microscopy (SEM), resonant Raman spectroscopy, and angle-resolved X-ray absorption near-edge structure (XANES). This detailed characterization gives evidence for the growth of a thin layer (crust) of randomly oriented single-walled carb...

متن کامل

Carbon Nanotube Synthesis and Organization

The synthesis, sorting and organization of carbon nanotubes are major challenges toward future applications. This chapter reviews recent advances in these topics, addressing both the bulk production and processing of carbon nanotubes, and their organization into ordered structures, such as fibers, and aligned arrays on surfaces. The bulk synthetic methods are reviewed with emphasis on the curre...

متن کامل

On the Mechanical Properties of Chiral Carbon Nanotubes

Carbon nanotubes (CNTs) are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry o...

متن کامل

Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.

Utilizing aligned carbon nanotube arrays grown from chemical vapor deposition, we present a highly scalable route toward the formation of ribbons and ultrathin transparent films directly from vertically aligned single-walled carbon nanotube arrays (SWNT carpets). To "lay-over" the aligned nanotubes to form a film, we use a roller which acts to compress the film and preserve the alignment of nan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2016